Indice

Indice di alcuni problemi proposti Prefazione		7
		13
I	Meccanica Lagrangiana ed Hamiltoniana	17
1	Meccanica di base e richiami matematici	19
1.1	Dinamica del punto materiale	19
1.2	Dinamica dei sistemi	22
1.3	Richiami ad alcuni strumenti matematici	25
2	Meccanica Lagrangiana	33
2.1	Sistemi vincolati: il pendolo semplice e doppio	33
2.2	Equazioni di Eulero-Lagrange	41
2.3	Arbitrarietà nella scelta della funzione lagrangiana	47
2.4	Simmetrie e leggi di conservazione	49
2.5	Moto in campo elettromagnetico e scelta di gauge	56
2.6	Quando è possibile una formulazione lagrangiana?	59
3	Simmetrie e gruppi di simmetria	71
3.1	I gruppi di trasformazioni ed il caso delle isometrie	71
3.2	Il gruppo ortogonale	73
3.3	Rappresentazioni e tensori	80
3.4	Cenni alla meccanica del corpo rigido	82
3.5	Le equazioni del moto per il corpo rigido libero	87
4	Piccole oscillazioni intorno all'equilibrio	91
4.1	Il caso a più gradi di libertà	92
4.2	Proprietà generali dei modi normali	99
4.3	Alcuni esempi rilevanti ed il ruolo delle simmetrie	106
4.4	Simmetrie abeliane, non-abeliane e degenerazione	114
4.5	Sistemi a molti gradi di libertà: le onde elastiche	116
4.6	La fisica degli attenuatori	128
47	Dal discreto ai mezzi continui: le equazioni d'onda	132

Lezioni di Meccanica Classica

5	Il principio di minima azione di Hamilton	139
5.1	Enunciato del principio: considerazioni generali	139
5.2	Equazioni di Eulero-Lagrange	143
5.3	Il ruolo delle condizioni al contorno	147
5.4	Alcuni esempi: le geodetiche e la brachistocrona	148
5.5	Problemi variazionali con vincolo	154
5.6	Equazioni di Eulero-Lagrange per i mezzi continui	158
5.7	Perché un principio di minima azione?	161
6	Meccanica Hamiltoniana	165
6.1	Trasformata di Legendre ed equazioni di Hamilton	165
6.2	Lo spazio delle fasi ed il flusso hamiltoniano	173
6.3	Orbite chiuse e periodo dei moti unidimensionali	176
6.4	Evoluzione temporale e parentesi di Poisson	178
6.5	Teorema di Poisson: il caso del momento angolare	180
6.6	Costanti del moto ed integrabilità	182
6.7	L'evoluzione temporale ed il teorema di Liouville	184
6.8	Il teorema di ricorrenza di Poincaré	187
6.9	Invarianti adiabatici	187
6.10	Formulazione hamiltoniana per sistemi continui	198
7	Le trasformazioni canoniche	201
7.1	Definizione ed un primo esempio noto	201
7.2	Canonicità e simpletticità della matrice jacobiana	204
7.3	Invarianza delle parentesi di Poisson e canonicità	206
7.4	Trasformazioni canoniche e funzioni generatrici	208
7.5	Legge di composizione per le funzioni generatrici	216
7.6	Trasformazioni puntuali e scelta del gauge	219
7.7	Variabili azione-angolo e teoria delle perturbazioni	223
8	Evoluzione, conservazione e simmetria	235
8.1	Le trasformazioni canoniche infinitesime	235
8.2	L'evoluzione temporale è canonica	236
8.3	Simmetrie e conservazione: un legame intimo	237
8.4	Commutatori e parentesi di Poisson	240
8.5	L'integrazione numerica e gli integratori simplettici	248
8.6	La generatrice dell'evoluzione temporale finita	254
8.7	L'equazione di Hamilton-Jacobi	258

Indice

II	Introduzione alla relatività ristretta	267
9	La relatività da Galileo ad Einstein	269
9.1	Le trasformazioni di Lorentz	271
9.2	Trasformazioni delle velocità e degli angoli	276
9.3	Invarianza di <i>c</i> e metrica dello spazio-tempo	280
9.4	Distanze di tipo tempo, spazio e luce	283
9.5	Dilatazione dei tempi, contrazione delle lunghezze	286
9.6	Tempo proprio	289
9.7	Alcuni esperimenti classici alla luce della relatività	295
10	Introduzione alla formulazione covariante	303
10.1	Il gruppo di Lorentz	303
10.2	Il formalismo covariante	309
10.3	Quadrivelocità e quadriaccelerazione	312
10.4	Leggi fisiche e covarianza: l'elettromagnetismo	313
11	La cinematica relativistica	321
11.1	Energia ed impulso da Galileo ad Einstein	322
11.2	Le unità naturali	328
11.3	Formulazione lagrangiana e cenni di dinamica	336
	Invarianza di Lorentz e quantità conservate	342
11.5	L'effetto Doppler	343
	Un rapido sguardo alla meccanica ondulatoria	346
11.7	Velocità limite e principio di causalità	347
12	Sistemi accelerati e rigidità in relatività	355
12.1	Il punto materiale uniformemente accelerato	355
12.2	Il paradosso di Bell e la rigidità secondo Born	359
12.3	Sistemi estesi accelerati: la metrica di Rindler	362
12.4	Ritardo degli orologi in campo gravitazionale	366
III	Introduzione alla meccanica statistica	375
13	Le basi della meccanica statistica	377
	L'idea dell'ensemble e l'equilibrio termodinamico	379
	Microstati e macrostati	380
	La costruzione dell'ensemble	381
	Proprietà dell'ensemble canonico	385
	Perché lo spazio delle fasi: l'ipotesi ergodica	387
13.6	Inferenza, informazione e massima entropia	388

Lezioni di Meccanica Classica

14	Il gas perfetto monoatomico	393
14.1	Il conteggio dei microstati e le particelle identiche	394
14.2	L'ensemble canonico	395
14.3	Parametro β , temperatura ed equipartizione	397
14.4	L'ensemble microcanonico	398
14.5	La distribuzione di Maxwell-Boltzmann	402
14.6	Calore, fluttuazioni ed equivalenza fra ensemble	405
14.7	Capacità termica e dinamica microscopica	407
15	La connessione con la termodinamica	415
15.1	Funzioni di stato e quantità termodinamiche	415
15.2	L'entropia in meccanica statistica	417
15.3	I potenziali termodinamici	420
15.4	Densità e pressione in sistemi non omogenei	423
15.5	Sackur-Tetrode, paradosso di Gibbs, 3° principio	425
16	Oltre la meccanica statistica classica	441
16.1	L'oscillatore armonico classico e quantistico	442
	Il calore specifico del gas perfetto biatomico	446
16.3	Il sistema a due livelli e le temperature negative	450
16.4	Il calore specifico dei solidi ed il modello di Debye	452
16.5	L'ipotesi di Planck e la radiazione di corpo nero	464
17	Ulteriori sviluppi in meccanica statistica	481
17.1	La trattazione del caso interagente	481
17.2	La termodinamica per gli osservatori in moto	486
17.3	L'ensemble grancanonico	489
17.4	La corretta trattazione delle particelle identiche	492
Bibli	ografia	505
Indi	ce analitico	509

Indice di alcuni problemi proposti

Capitolo 1

- 1.1 un classico esercizio di urto fra un punto materiale ed un sistema rigido, pag. 30
- 1.2 derivate parziali, cambi di variabile, differenziali e derivate totali, pag. 31

Capitolo 2

- 2.1 il pendolo doppio nel formalismo lagrangiano, pag. 45
- 2.2 la lagrangiana in un sistema rotante e le forze apparenti, pag. 46
- 2.3 un modo sbagliato per usare le quantità conservate nel formalismo lagrangiano, pag. 55
- 2.5 la prima correzione all'isocronismo del pendolo semplice, pag. 61
- 2.6 sulla (non)conservazione dell'energia per un punto materiale su un guida rotante, pag. 62
- 2.8 moto in campo gravitazionale e magnetico sulla superficie di un cono, pag. 63
- 2.9 campi magnetici uniformi e sistemi rotanti, pag. 64
- 2.10 la versione magnetica del pendolo di Foucault, pag. 65
- 2.11 la versione originale del pendolo di Foucault, pag. 66
- 2.12 la versione povera del teorema di Bertrand, pag. 67
- 2.13 le condizioni di Helmholtz per il moto in campo elettromagnetico, pag. 68
- 2.14 formulazione lagrangiana per l'oscillatore armonico smorzato, pag. 69

- 3.1 il primo termine non banale della formula di Baker-Campbell-Hausdorff, pag. 79
- 3.2 ed esercizi seguenti: proprietà e simmetrie di vari tensori di inerzia, pag. 86
- 3.6 calcolo del moto libero di una trottola simmetrica, pag. 89

Capitolo 4

- 4.1 le piccole oscillazioni del pendolo doppio, pag. 97
- 4.2 il pendolo doppio fisico, pag. 104
- 4.3 il pendolo doppio sferico, pag. 105
- 4.4 simmetrie continue e modi zero nelle piccole oscillazioni, pag. 106
- 4.5 simmetria per scambio e struttura dei modi normali, pag. 108
- 4.6 simmetrie del sistema, loro realizzazione e comparsa di modi zero accidentali, pag. 109
- 4.7 un problema con simmetria sotto permutazione di tre coordinate, pag. 112
- 4.9 il ruolo delle condizioni al contorno in un sistema di *N* oscillatori accoppiati: condizioni libere, pag. 125
- 4.10 come sopra, per il caso delle condizioni periodiche, pag. 126
- 4.11 una variazione sul tema: l'equazione di Klein-Gordon, pag. 135
- 4.12 un sistema di pendoli accoppiati: l'equazione di sine-Gordon ed i solitoni, pag. 137

Capitolo 5

- 5.1 la brachistocrona con condizioni al contorno libere: uno scivolo da record all'acquapark, pag. 163
- 5.2 superfici minimali e bolle di sapone, pag. 163

- 6.1 una dimostrazione dell'identità di Jacobi per le parentesi di Poisson, pag. 180
- 6.2 la conservazione del vettore di Lenz, pag. 184
- 6.3 invariante adiabatico per l'oscillatore armonico, pag. 191
- 6.4 un pendolo semplice di lunghezza lentamente variabile, pag. 192
- 6.5 invariante adiabatico per una particella in una scatola e la pressione sulle pareti, pag. 193
- 6.6 formulazione hamiltoniana per l'oscillatore armonico smorzato, pag. 195
- 6.7 il periodo di oscillazione in un potenziale a doppia buca, pag 197

Indice di alcuni problemi proposti

Capitolo 7

- 7.1 calcolo dell'hamiltoniana in un sistema rotante, pag. 203
- 7.2 le trasformazioni lineari simplettiche nel piano, pag. 217
- 7.3 sistemi canonicamente equivalenti ad un oscillatore armonico, pag. 219
- 7.4 trasformazione dell'hamiltoniana per una generica trasformazione puntuale, pag. 221
- 7.5 le variabili azione-angolo per l'oscillatore armonico, pag. 227
- 7.6 la teoria hamiltoniana delle perturbazioni applicata alle violazioni dell'isocronismo del pendolo, pag. 227
- 7.7 l'hamiltoniana in un sistema rotante attraverso la funzione generatrice, pag. 228
- 7.8 trasformazione canonica al centro di massa nel problema dei due corpi, pag. 229
- 7.9 la particella in campo magnetico uniforme come un oscillatore armonico, pag. 229
- 7.10 invariante adiabatico in un campo magnetico lentamente variabile, pag. 230
- 7.11 moto in campo magnetico statico ma non uniforme: specchi magnetici, bottiglie magnetiche e fasce di Van Allen, pag. 231
- 7.12 altri invarianti adiabatici per il moto nel campo magnetico terrestre, pag. 233

- 8.1 relazione fra quantità conservate e simmetrie anche nel caso di trasformazione canonica dipendente dal tempo, pag. 242
- 8.2 il gruppo di simmetria ricostruito a partire dalle quantità conservate: il caso dell'oscillatore armonico isotropo, pag. 242
- 8.3 particella in campo magnetico in un gauge invariante per rotazioni: cosa è il momento angolare, pag. 246
- 8.4 coordinate paraboliche, momento angolare e rotazioni, pag. 247
- 8.5 integratori numerici, simplettici e non, applicati all'oscillatore armonico, pag. 251
- 8.6 quantità esattamente conservate dagli integratori simplettici, pag. 253
- 8.8 trasformazione canonica per l'evoluzione temporale finita nel moto uniformemente accelerato, pag. 257

Capitolo 9

- 9.1 lo strano mondo in cui la velocità della luce è immaginaria, pag. 278
- 9.2 aberrazione della luce: confronto fra il caso relativistico e quello non relativistico, pag. 279
- 9.3 calcolo del percorso con maggiore o minor tempo proprio fra due eventi assegnati, pag. 291
- 9.4 calcolo del tempo proprio sulla stessa traiettoria in diversi sistemi di riferimento, pag. 292
- 9.5 una variante di un tipico paradosso sulla contrazione delle lunghezze, in cui cambiando riferimento un oggetto appare contenuto in qualcosa di ovviamente più corto della sua lunghezza, pag. 293
- 9.6 effetti speciali nelle foto relativistiche: rotazioni invece di contrazioni, pag. 301

Capitolo 10

- 10.1 composizione di boost non paralleli e la rotazione di Wigner, pag. 307
- 10.2 derivazione della precessione di Thomas, pag. 308
- 10.3 boost lungo un filo neutro percorso da corrente, pag. 319
- 10.4 boost parallelo ad una distribuzione piana di carica, pag. 320

- 11.1 studio del decadimento in due corpi, pag. 329
- 11.2 studio del decadimento in tre o più corpi, pag. 330
- 11.3 calcolo dell'energia di soglia per la produzione di nuove particelle, pag. 331
- 11.5 la velocità relativa come invariante relativistico, pag. 333
- 11.7 effetto Compton: la rivincita dell'interpretazione corpuscolare, pag. 334
- 11.8 diffusione elastica fra due particelle massive, pag. 335
- 11.9 la frequenza di ciclotrone nel caso relativistico, pag. 349
- 11.10 effetto Doppler contro uno specchio in moto, pag. 349
- 11.12 l'inganno dell'effetto Doppler trasverso, pag. 350
- 11.13 un fotone che rimbalza fra due particelle massive, pag. 351
- 11.14 effetto Doppler da un'astronave in moto circolare uniforme, pag. 352
- 11.15 distribuzione angolare della potenza emessa da una sorgente isotropa in moto relativistico, pag. 353

Indice di alcuni problemi proposti

Capitolo 12

- 12.1 ritardi relativistici e gravitazionali nell'esperimento di Hafele e Keating, pag. 369
- 12.2 quanto tempo abbiamo per mandare informazioni ad un'astronave partita con moto accelerato uniforme (relativistico)? pag. 369
- 12.3 moto in caduta libera verso l'orizzonte degli eventi, pag. 370
- 12.4 andamento della frequenza ricevuta da un'astronave in moto accelerato uniforme, pag. 370
- 12.5 moto di un'astronave a motore fotonico, pag. 371
- 12.6 moto di un'astronave a vela fotonica, pag. 372

Capitolo 13

- 13.1 la moneta caotica come prototipo dell'ensemble, pag. 390
- 13.2 il pericolo di usare troppe informazioni nella costruzione dell'ensemble, pag. 392

Capitolo 14

- 14.1 capacità termica in un potenziale invariante di scala, pag. 407
- 14.2 capacità termica in un potenziale con una scala di energia caratteristica: il potenziale armonico con perturbazione quartica, pag. 408
- 14.3 termodinamica di un sistema di particelle in un potenziale a doppia buca, pag. 409
- 14.4 termodinamica di un sistema di particelle in un potenziale a cappello messicano, pag. 410
- 14.5 calcolo di valori medi sulla distribuzione di Maxwell-Boltzmann, pag. 411
- 14.6 sulla possibilità che le particelle dell'atmosfera terrestre fuggano via, pag. 412
- 14.7 potremmo percepire il moto di agitazione termica di un gas toccandone il recipiente? pag. 413
- 14.8 distribuzione in energia del gas perfetto monoatomico, pag. 414

- 15.1 il gas perfetto nel campo gravitazionale, pag. 428
- 15.2 il gas perfetto in equilibrio termico su una superficie sferica, pag. 430
- 15.3 come sopra, ma nel campo gravitazionale, pag. 432

Lezioni di Meccanica Classica

- 15.4 gas biatomico e calcolo della polarizzabilità per orientamento per un gas di molecole polari, pag. 433
- 15.5 la "pressione" sulla parete in un mezzo potenziale armonico, pag. 435
- 15.6 termodinamica ed equazione di stato per un gas di particelle ultrarelativistiche, pag. 436
- 15.7 le prime correzioni massive al gas ultrarelativistico, pag. 437
- 15.8 un gas relativistico esattamente risolubile: il caso bidimensionale, pag. 438

Capitolo 16

- 16.2 capacità termica per un generico sistema con un numero finito di microstati discreti, pag. 469
- 16.3 gas di particelle cariche vincolato su una circonferenza: un prototipo di sistema diamagnetico, pag. 470
- 16.4 un gas di atomi con momento magnetico non nullo: un prototipo di sistema paramagnetico, pag. 472
- 16.5 stima della scala di discretizzazione in un potenziale quartico, pag. 473
- 16.6 microstati discreti e limite classico in una scatola unidimensionale, pag. 474
- 16.7 termodinamica di due pendoli semplici fortemente accoppiati, pag. 474
- 16.8 protoni a spasso per l'Universo: il limite GZK all'energia dei raggi cosmici, pag. 475

- 17.1 lo spazio delle fasi è un invariante relativistico, pag. 489
- 17.2 il prototipo di un gas interagente: due particelle in un scatola unidimensionale con potenziale di interazione a corto raggio, pag. 496
- 17.3 sistema con due bosoni o due fermioni e loro interazione effettiva, pag. 497
- 17.4 sistema con N bosoni o fermioni in termini delle funzioni di partizione di singola particella, pag. 499
- 17.5 la distribuzione grancanonica come quella di una piccola sottoparte dell'ensemble canonico, pag. 501
- 17.6 lo spettro della radiazione di fondo a microonde visto da un sistema in movimento, pag. 502